Data Management Plans

A neurobiologist’s perspective

Stanley Heinze, Lund University
ERC Starting grant: The Neurobiological Basis of Navigational Decisions

What do brains do?

Sensory information
Memory
Motivational state
Behavioral state

Current state of the world
Desired state of the world

85 000 000 000 neurons

Motor actions compensating any mismatch (Behavior)

All behavioral decisions = what do I do next?

Navigational decisions = where do I go next?

Human
Animals
Insects

One insect brain region

The central complex - A Brain in the Brain

Sensory information
Current heading
Desired heading
Memory
Motivational state
Behavioral state

Compensatory steering commands

3 000 neurons
What is a Data Management Plan (DMP)?

Before starting a series of experiments, have a concrete plan about what to do with the data resulting from the experiments.

ERC template asks how to address five points:

1. MAKING DATA FINDABLE
2. MAKING DATA OPENLY ACCESSIBLE
3. MAKING DATA INTEROPERABLE
4. INCREASE DATA RE-USE
5. ALLOCATION OF RESOURCES and DATA SECURITY

This all makes sense and sounds reasonable, but remains a bit fuzzy
Why are DMPs so low on researchers priority lists?

- additional effort
- no credits

Mandatory DMPs are now common for most grants.

—> why is this good?

Accountability, scientific integrity

Data reuse within and across research fields

More efficient use of resources
Organizing data has immediate benefits to the researcher

- The researcher knows where all data are
- There are no conflicting copies of files generated by several storage places
- Data are less likely lost
- A system for file names etc. is created before the data is generated (minimizing confusion)

- Group members know where data are, enabling better collaborations within the group
- As data formats are known in advance, data analysis pipelines can be developed early
- Automatic analysis is facilitated

- Organized data can be moved to public repositories without much additional effort

→ Fewer mistakes
→ More accountability
→ Higher productivity
Step 1: What will my data be?

Electrophysiology —> Large files containing **voltage recordings** (specific formats, e.g. smr, matlab or text format)

Anatomy —> Large confocal **image series** of each neuron injection; **image series** from reference brains; **3D surfaces** of brain areas, **label fields**, **3D skeletons** of single neurons.

Connectomics —> Gigantic **image series** of serial section electron microscopy work (terabytes of data) with associated **skeletons** of thousands of neurons.

Behavioral experiments —> High speed **videos** of bee behavior and analyzed **flight tracks**.

Analysis and computational modeling —> **software code**

File formats? —> mat, tiff, smr, swc, txt, am

Type of data? —> Images, text, videos, sound

Size? —> MB, GB, TB?
Step 2: Where will I store my data?

Upon acquisition:
- local computer
- notebooks
- camera (SD card)

Analysis stage
- local computer
- external hard drives
- NAS server (with data redundancy)
- cloud

Post-publication
- repository
- local backup (NAS, cloud, hard drives)

Accessibility
(who can access from where?)

Safety
(can data be lost?)

Security
(can data leak out?)
Step 3: How do I store my data? Make them FAIR

Findable ➔ Unique identifiers in repository, persistence, visibility

Accessible ➔ Openly accessible (not behind paywall)

Interoperable ➔ Standard data formats, proper annotation

Reusable ➔ Open licenses, quality assurance, maintenance

Find a suitable repository

General repositories:
- Zenodo (https://zenodo.org)
- Dryad (https://datadryad.org)
- Figshare (https://figshare.com)
- The Dataverse Project (https://dataverse.org)
- Open Science Framework (https://osf.io)

Field specific repositories:
- e.g. Flybase, WormBase, MonarchBase, Genome databases, Image data repositories

We created our own repository

www.insectbraindb.org
Database software
- helps with online upload of data
- facilitates annotation by providing automatic meta-data
- automatic cross links to other public data
- provides elaborate visualization tools
- allows to keep data private until explicitly published in the database
- private data can be shared between users

Idea:
Data formats and structure during analysis stage should ideally be identical formats and data structure in final repository

Database

Data acquisition

Private data

Public data

Pre-publication and post-publication data are in the same space, using same structure and formats

→ can be made public by one click
Usefulness for every-day life
(why should anyone deposit data in our database?)

- Create publication-ready snapshots without additional software
- Compare neurons within and between species side by side on site
- Locate own data and data of others faster and easier than any other way
- Easily find publications linked to data

- **Private mode**: Use as lab-internal data-repository
My data management plan evolved into a software tool:

- Provide direct advantages for researchers who deposit research data pre- and post-publication
- Eliminates the extra burden of making data available after publication
- Facilitates organization of research data in a way that is compatible with the field
- Provides a persistent identifier for each dataset
- Provides a cost-free way to manage, archive and share even complex data

Thinking about the DMP helped me realize:

- what my data is
- what the standards in the field are for certain data
- what meta-data are key to make data useful to others
- how to make data available to the field
- what the current standards for repositories are
- what the future mandates will be and how to anticipate them