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A multimarker diagnostic test

. Stockholm3

Screening test for detection of advanced prostate cancer

Proprietary algorithm ptockhom3 = f |

More effective at predicting prostate cancer risk than PSA alone

Implemented in the Swedish health care system since 2016 —
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An example from our group (Rydén)

- NILS — Non-Invasive Lymph node Staging of the axilla (breast cancer)

- Knowledge gap: No existing prediction tools based on preoperatively available characteristics

Probability of healthy lymph nodes
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The estimated prebability of healthy lymph

Figur: Looket Dihge




The steps

- Identify the need for a new decision support tool — extensive literature review
- Collect "enough” relevant good quality data

- Develop and validate the model

- Assess its clinical value (prospective study)

- Implement the model




Recommended The TRIPOD*
literature guidelines

Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) : The TRIPOD
statement

Statistics for Biology and Health o

Reporting guideline Reporting of studies developing, validating, or updating a prediction model, whether
provided for? for diagnostic or prognostic purposes.

(i.e. exactly what the

authors state in the paper)

Ewout W. Steyerberg

TRIPOD Checklist for Prediction Model Development: Word | PDE

TRIPOD st for Prediction Model Validation: Word | PDF

TRIPOD Checklist for Prediction Model Development and Validation: Word | PDE

Full bibliographic Collin , Reitsma JB, Altman D( oons KG. Transparent reporting of a
reference multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The
TRIPOD statement.

This guideline was published simultaneously in 11 journals. You can read the guideline
in any of these journals using the links below.

A Practical Approach to Development,
Validation, and Updating

Ann Intern Med. 62(1): 3. PMID: 25560714
Br J Cancer. 2015 Jan 6. PMID: 2

Circulation. 2015 Jan 13;13

BMJ 2015; 350:97594.

J Clin Epidemiol. 2015 ;

Eur Urol. 2014 Dec 9. PMID

BMC Med. 2015 Jan

Eur J Clin Invest. 201

Br J Surg

BJOG. 2

@ Springer

* https://www.equator-network.org/reporting-guidelines/tripod-statement/



Well defined target population
1 "‘ i
- For which population is the prediction model intended?

- Stockholm 3: All men aged 45-74 with no previous prostate cancer diagnosis

- NILS: Female primary breast cancer patients




Well defined outcome ﬂ

- Binary outcome in this lecture (most of the ideas applicable also to other types of outcomes)
- Advanced prostate cancer (yes/no)

- Breast cancer spread to the axillary lymph nodes (N+; yes/no)
At least one macrometastasis (>2mm)
At least one micrometastasis (>0.2mm)

At least isolated tumor cells




The goal

To develop a model with good discrimination and
calibration upon validation in independent datasets

To Capture the signal in the data used for model development, not the noise
A trade-off between and




All models are wrong but some are useful

Since all models are wrong the scientist cannot obtain a "correct”
one by excessive elaboration

Just as the ability to devise simple but evocative models is a George Box 1976
signature of the great scientist so overelaboration and
overparametrization is often the mark of mediocrity




Problems to avoid

Overfitting (and underfitting)

Overparametrization
Overtraining

Overoptimism




William Occham (1287-1347)

The principle of parsimony

Occham’s razor

The problem-solving principle that recommends searching for explanations
constructed with the smallest possible set of elements

Find a simple model that performs well upon external validation
Break this rule if you have good reasons to do so

Ongoing project: Prediction of lymph node status using features from
mammograpgy images

Convolutional neural networks with up to 2 million parameters
Hundreds of CPU hours to train a model



Example: Kernel estimate of a known function {
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Source: The Bias Variance Trade-Off (youtube.com)



https://www.youtube.com/watch?v=FcXQKsZKRUs

Simulate data from f and fit a Gaussian kernel regression model to the data

The complexity of the model is determined by a , the width of the regression kernel

Alarge kernel width -> Bias at most x-values

-10- o o o
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The average prediction at X, 1s biased for this large kernel width




Even larger kernel width (underfit)

Total squared error = Irreducible error + Squared bias + Variance
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Small kernel width (overfit)
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The perfect balance between bias and variance (at X))
Total squared error minimized
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Model Complexity

Copyright: Saurabh Kumar




Back to clinical prediction modelling




DREAM Challenges

DREAM % s Home About ~ DREAM 101 ~ Challenges ~ Publications Latest News ~ Q
7 .,

CHALLENGES /!

powered by Sage Bionetworks

Solving Problems. Together.

Pose Prepare Engage Evaluate Share
? Question = Data e Solvers -‘, Models < Results

LEARN MORE JOIN A CHALLENGE

DREAM Challenges use crowd-sourcing to solve complex
biomedical research questions

Hard prediction problems
Large sample size

Many potential predictors
Often omics data

Cheap to participate

Top list of best fitting models

Price money for best performing
model on set-aside test data




Lessons from DREAM challanges

- Subject matter knowledge matters!

. 100% data driven models seldom winners




Regression Modelling or Machine Learning?




Dataset used to compare modelling strategies

The first version of the NILS model

Nomograms for preoperative prediction of axillary nodal status

. in breast cancer
Complete case analysis (n=588; )
L. Dihg{:['3, P.-O. Bendahl? and L. R}-‘dénH

"The rule of 20” -> Up to 10 parameters in the model

Variable selection based mainly on subject matter knowledge (not data driven)

Logistic regression Nomogram

NO versus N+ (n=598) Vascular invasion
P
Subtype
tﬁg:g.-HEHE— B ) Tumour size (mm) -
LumB/HER2+ 11 {0- 21) Detected by
HER2+/non-luminal 48 ) Mammographic Screening Mo
Triple-negative 5- -5i0] Age (years)
Age (per year) 02 (100 ’
bode of detection Subtype*
Symptomatic -00 ’ 1234
hMammographic screening 7 B, 2-61)

Tumiour size (per mm) 09 a7y < (-0 Score |

Butifocality 0

= e Predicted probakbility

o 172 (1-11,2-85) 001 005 01 02 0304050607
Vascular invasion

Yeg

1-00 - Total score 0 04 06
Mo -67 (2-T0, B-08) 0 ! ! - 1 — specificity

Model validated by Majid et al. BJS Open 2021: The same AUC = 0.74 and good calibration




Data split recommended for large dataset

Training set (for model development; 70%)

r—l

2. Validation set (first validation of performance; 15%; finetuning of hyperparameters)

3. Test set (final evaluation of performace; 15%)

Note 1: The N-status dataset is too small for splitting into three sets so I merge validation and test (30%)

Note 2: Split conditional on the outcome to guarantee the same outcome prevalence in the subsets




Model development in the training dataset

The Binary outcome: N_ plus

. tabulate N_plus if set==1

Total

Evaluated predictors

« Patient age (years) Continuous

* Mode of detectiong (screening/symtomatic) Binary

e Tumor size (mm) Continuous

«  Multifocality (yes/no) Binary

« Lymphovascular invasion (yes/no) Binary

»  Molecular subtype (factor, 5 levels) 4 dummy variables




Model 1: Logistic regression, the BJS model

Model performance in the training set

. estat ic

s information criterion and Bayesian informaticn critericon

Akaike
. logistic N_plus *LumA age scr tum size multifoc LVI

Logistic regre N 5 419 Model \ 11(nully 1l{model)
B9.37
@.0000 . 419 -265.5292 -220.844
Log likelihood = -220.84396 Seuc 9.1683
Mote: BIC uses N = number of observations.

Odds ratio err. z >z [95% conf. interval]
. predict phat
LumB_HERZneg_ws_LumA . 7685662 . 2184684 . 4493434 1.314551 t:|:|F|tj_|:|r| pr assumed; F'r[:[-]_p]_u-;-,j :|
LumE_HE /s Luma 1.850976  .4896771 4216927 2.619328
LumA .5071292 .384929 .1145583 2.244971
LumA .1325429  .@A79352 .B361101 4865012
age .9750664  .0100907 ' 9554883 9950457
scr_det .4459999  .1109787 .2738604  .7263407 Asymptotic normal

1.048318  .0146677 1.01996 1.077464 err. ¥ conf. interwval]

1.765435  .4636465 1.855129 2.953916
5.988399  2.132529 2.979815 12.083461 0.69971 0.80129

1.357134 9775351 .3387558 5.568435

. roctab N_plus phat

. gen sg_error=(phat-N_plus)~2

- UM sq_error

sq_error




Model 2: Logistic regression, the BJS model
,pr(0.157)

Model performance in the training set

. estat ic

Akaike's informaticn criteriocn and Bayesian information criterion

. stepwise, pr(.157): logistic N_plus *LumA age scr tum_size multifoc

Wald test, begin with full model: H(null) 1l(model) df [V ﬂIC‘] BIC
= 9.9150 >= 8.1578, removing LumB_HER2pos_ws_LumA
9.3623 »= 8.1578, removing HER2pos_nonlum_wvs_LumA ’ 419 -265.5292 -221.7084 7 |4°7-4167 ) 485.6818

9.3620 »>= 8.1578, removing LumB_HERZneg ws LumA

Note: BIC uses N = number of chservations. See [R] IC note.
Logistic regression Number of obs )
LR chi2(6) . predict phat
Prob > chiz {option pr assumed; Pr(M_plus))

Log likelihood = -221.70836 Pseudo R2
. roctab N_plus phat

N_plus | O0dds ratic  Std. err. [95% conf. interval] ROC Asymptﬂtlc.nnrmal
- Obs Std. err. [95% conf. interval]

tum_size 1.046248  .0143387 1.918519  1.874733
LVI 5.747705  2.006036 2.900095  11.39139 419 l 0.7533 J 0.9253 @.70334 @.80334
multifoc 1.767931  .4625329 1.058695  2.952297
TN vs_Luma .1517574  .@973275 8431761  .5334037 - gen sq_error=(phat-N_plus)"2

age .9754421  .@@99687 9560082  .9951773
scr_det 4575946  .111754 .2835307  .7385192 - SUm sq_error

Cons 1.22745 - 8600713 .310863 4.846617 . .
- Variable | Obs Mean Std. dew. Min Max

sq_error . 1768842 . 2068361 . 0004445 . 7894332

Improved fit as measured by AIC and AUC, fewer parameters, more data driven, risk for overfit?




Model 3: Logistic regression,
Stepwise backward elimination, pr(0.157)

The number of knots varied for tumorsize Model performance in the training set

Three knots optimal as measured by AIC - estat ic

kaike's information criterion and Bayesian information criterion

Splines for age did not improve AIC

11({null} 11({model} C AIC

419 -265.5292 -220.643 457 .286

Mote: BIC uses N = number of cbservations. S [R] IC note.

. makespline rcs tum_size, knots(3)

. stepwise, pr(.157): logistic N_plus *LumA age scr _r* multifoc LVI

Wald test, begin wi full model:
= 8.9219 >= 8.157 removing LumB_HERZ2pos_vs_LumA
9.4252 »>= 8.1578, removing HER2pos_nonlum_vs_LumA
@.3129 »= 8.157 remaving LumB HER2Zneg vs LumA

predict phat
‘option pr assumed; Pr{N_plus))

Logistic regres Number of obs 419
LR chiz2(7) 89.77
Prab » chi2 0.0000
Log likelihood = -220.64302 Pseudo R2 0.1690

roctab N_plus phat

Asymptotic normal
[95% conf. interval]
Odds ratic err. z > | 2 [95% conf. interwval] B.76754 @.80720
_res_ 11 .8254117 . 8649928 . . 820169 3.819977
LVI 5.537328 1.941816 4. 2.7B4857 11.01626
multifoc 1.741929 .4582316 2. 1.848192 2.917674
TH_vs_LumA . 1644663 .1635914 2. . 8478559 .5652211
age .9766961 . 8188552 2.: 9571858 -.9966084
scr_det . 4693985 .114999 . . 2983975 . /587896
_rs_rcs_1 177.9263 389.535 2. 2.436125 12995.13
_cons 6258788 .5389034 . 1153673 3.38B6779

gen sq_error=({phat-N_plus}*2

sum =q_error

. 20566089 . Bea2379

Best fit so far, more flexibility = more parameters, more data driven, higer risk for overfit (lower of underfit)



Idea — Punish complex models

AIC penalizes large model
Let k be the number of estimated parameters and L the estimated maximum likelihood for a model, then
AIC = 2k — In(L)

We want L to be as large as possible, hence —In(L) to be as small as possible

Alternative — (shrinkage)
Maximize L — A*F(B)
A
B A vector of regression coefficients for the standardized predictors
F B2+ ...+ B2
F 1B¢] + ... + | By




Ridge vs. LASSO

- The Ridge penalty the parameters towards zero, but never all the way down to zero

- A large LASSO penalty leads to maximum on the boundary where some regression
coefficients are = 0

. Hence LASSO can be used as a tool for

Coefficient paths

Ridge regression works best when most of the
evaluated predictors are useful

LASSO regression works best when most of the
evaluated preditors are useless

Lambda is often chosen by
(default 10-fold in Stata)

Larger penalty



Model 4: Ridge regression, A chosen by 10-fold cross validation

. elasticnet logit N_plus *LumA age scr tum size multifoc LVI, rseed(1234) selection(cv)falpha(@

Evaluating up to 180 lambdas in grid ...
Elastic net logit model

selection: Cross-validation Mo. of CV folds

MNo. of Out-of-
nonzero sample CV mean

Model performance in the training set

Description lambda coef. dev. ratio deviance

. predict phat
first lambda 158. 3301 1.273972 (opticns pr penalized assumed; Pr{N_plus) with penalized coefficients)
lambda before .8582432 1.113365
selected lambda .853069 1.113342
lambda after .8483545 1.113445
last lambda .B158339 1.128212

. roctab N_plus phat

. lassocoef, display(coef)

active . gen sq_error={phat-N_plus)~2

LumE_HERZneg_ws_LumA -.839115 :
- - E) n (j - Sum sq_error
LumB_HERZpos_ws_LumA . 9543951 € ahze 1

HER2pos_nonlum_ws_Luma -. 8578412 Standardized Mean

TN_ws_LuméA -. 2835752 .
age | -.1968776 regression
scr_det -.2B869108

tum_size | .3292159 coefficients

multifoc . 1999622

Tl Tarer Ridge regression modelling with splines did not improve discrimination

sqQ_error 1778398 .1891919 .B030373 . 73508298

_cons -. 7875241

Penalization should in theory safeguard against overfit



Model 5: LASSO regression, A chosen by BIC criterion

. lasso logit N_plus *LumA age scr tum size multifoc LVI, rseed(1234) selection(bic)

Evaluating up to 100 lambdas in grid ...

Model performance in the training set

. predict phat
{options pr penalized assumed; Pr(M_plus) with penalized coefficients)

Coefficient paths

. roctab N_plus phat

Asymptotic normal
[95% conf. interval]

B.78768

. gen sq_error={phat-N_plus)~2

%)
2
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- SuUm sq4_error

Variable : Mean

sq_error 1779631 . .71229669

Selected A = 0.1547; 6 nonzero coefficients




Other variants of penalized regression

- Other criteria for selection of A

- Adaptive LASSO

. Backward selection LASSO Not evaluated in this presentation
. Square root LASSO

- Relaxed LASSO

. Elastic net




Machine Learning

- Hyped
- Black box?
- Very flexible (too flexible?)

Data Mining, Inference, and Prediction

- Data hungry — Should not be applied to "small datasets”

- Might be a good choice when both the number of patients and the number of potential
predictors is very large

Omics data

Image data




Examples of machine learning methods {01 g
prediction of a binary outcome -

- Logistic regression? (NILS version 1)

- Classification/Decision trees

Random Forest

Boosting (Adaboost, Gradient boost, XGBoost)

- Support Vector Machines (SVM) BMC Cancer
' [RESEARCH ARTICLE ___________________________ Open Access|
. K-Nearest Neighbours (KNN) BESERN CRERERICIE Open Access
Artificial neural network models to predict ")
- Naive Bayes nodal status in clinically node-negative

breast cancer

° Artlflc1a1 Neural Networks ( ANN; NILS VerSIOn 2) Looket Dihge'~, Mattias Ohlsson®, Patrik Edén®, Par-Ola Bendahl® and Lisa Rydén'~"




Random Forest

1. Draw a bootstrap sample from the dataset
On average 37% of the original samples will not be included in a bootstrap sample

The clever idea is to use these samples to evaluate model performance (the Out-Of-Bag (OOB) error)

2. Build a decision tree for the bootstrap sample
But evaluate only a random subset of the variables at each split

Default fraction in R: Square root of the number of variables rounded downwards

3. Create a forest of n decision trees by repeating the steps 1-2 above

4. Classify all OOB samples for all trees, OOB error = fraction wrongly classified




Random forest modelling of Nodal status

Example code here: random forest demo/random forest demo.R at master - StatQuest/random forest demo - GitHub

library(randomForest)

Easy modelling once you have data in the right format

mode] =< HﬁndanDrEStiﬂ_p1u5 ~ ., data=data, proximity=TRUE)

Default settings often OK, but vary the hyperparameters
number of trees
number of variables evaluated at each split
minimum number of samples per terminal node
maximum number of terminal nodes

Call:
randomForest(formula = N_plus ~ ., data = data, proximity = TRUE)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 3

Q0B estimate of error rate: 28.64%
usion matrix:
NO Nplus class.error .
NO 252 29 0.1032028| 1-specificity
Nplus 91 47 0.6594203) 1-sensitivity



https://github.com/StatQuest/random_forest_demo/blob/master/random_forest_demo.R

The upper part of the tree for the first bootstrap sample

<16.5mm

>16.5mm

Split at 8mm Split at 12mm Split at 68 years Split at 69 years ~ Split at 49 years

In total 111 nodes in the first tree of the forest




Out-of-bag Error

500 trees 1000 trees

06 JWWM‘WWMW

28.64% ’ 27.68%




Model 6: Random forest, default settings in R

call:
randomForest(formula = N_plus ~ ., data = data, proximity = TRUE)
Type of random forest: classification
Number of trees: 500

° 500 t.rees ) No. of variables tr'iedl!;e:ea.cc:h S[;?'I't: 3
* 3 Varlables evaluated per Spht Q0B estimate of error rate: 28.64%
« Min number of samples per terminal node = 1 | —
 No limit on number of terminal nodes Nolus 91 47 0.6594203

call:
randomForest({formula = N_plus ~ ., data = data, ntree = 1000
xnodes = 41)

® IOOO trees Type of random forest: classification
o 0 Number of trees: 1000
e 2 Varlables evaluated per Spht No. of variables tried at each split: 2
e Min number Of Samples per termlnal I]Ode =2 00B estimate of error rate: 25.78%
. Confusion matrix:
e Max41l termlnal nOdeS NO Nplus class.error

NGO 269 12 0.04270463

NpTus 96 42 0.69565217

Lower sensitivity but higher specificity




Validation of the random foresest models using
data set aside (validation + test; 30%)




Model 6: Random forest, Validation+Test (n=179; 30%)
default settings in R

set.seed(42)

model <- readRDS(file="RF_default_dev")
pred <- predict(model, data)
table(datasSn_plus,pred)

call:
randomForest{formula = N_plus ~ ., data = data, proximity = TRUE)
Type of random forest: classification
Number of trees:
No. of variables tried at each split: 3

pred
NO Nplus
NO 106 14
00B estimate of error rate: 28 Nplus 39 20
Confusion matrix:
NO Nplus class.error
NO 252 29 0.1032028
Nplus 91 47 0.6594203

14+39=53 of 179 samples misclassified (29.61%)

Model 7: Random forest, S
flnetuned hyperparameters model <- readRDS(file="RF_dev")

pred <- predict(model, data)
table(data$N_plus,pred)

pred
NO Nplus
NO 112 8
Nplus 41 18

call:

randomForest(formula = N_plus ~ ., data = data, ntree = 1000
xnodes = 41)

Type of random forest: classification
Number of trees: 1000
No. of variables tried at each split: 2

00B estimate of error rate: 25.78% . .

confusion matrix: 8+41=49 of 179 samples misclassified (27.37%)
MO Nplus class.error

NO 269 12 0. D463

NpTus 96 42  0.69565217




The five regression models

[ Model  auc |  aAuc | Drop
development | validation+test

1. No selection

2. Backward elimination

3. Backward elimination + RCS
4. Ridge, lambda selected by cv
5. LASSO. Lambda selected by BIC

General performance drop as measured bu AUC

Overfit?
Harder to predict N-status in validation+test?
Chance?




Predicted probabilies of N+ in validation+test

LLASSO vs Backward elimination

Tilted cloud

Effect of penalization (less extreme probabilities)
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The five regression models after having added 50
random variables to the set of potential predictors

Model AUC AUC Drop
development | validation+test

1. No selection 0.8209

2. Backward elimination 0.7959 8 random selected

3. Backward elimination + RCS 0.7998
4. Ridge, lambda selected by cv 0.8128
5. LASSO Lambda selected by BIC 0.7352 Only 3 var selected




Back to performance in validation+test without
added random variables




Random Forest, default settings verus the five regression
models — discrimination

—e— M1 ROC area: 0.7024

—o— M2 ROC area: 0.7131

—o— M3 ROC area: 0.7158
M4 ROC area: 0.7062

—o— M5 ROC area: 0.7129
Reference

>
=
=
=
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c
]
w

0.50
1-specificity




Random Forest, finetuned hyperparameters verus the five
regression models — discrimination

—e— M1 ROC area: 0.7024

—e— M2 ROC area: 0.7131

—e— M3 ROC area: 0.7158
M4 ROC area: 0.7062

—e— M5 ROC area: 0.7129
Reference

>
=
=2
=
n
c
(<]
w

0.50
1-specificity




Can ROC-curves be drawn also for random forests?
Yes, based on the fraction of out-of-bag votes for N+ for each sample
Possible to draw in R?

Seems to be much easier 1 Python




Finally Calibration — Hosmer Lemeshow™

Calibration intercept = -0.01
Calibration slope = 0.75

The backward
elimination with
splines for tumor size

Calibration in
validation+test
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Predicted probability of axillary disease

* https://www.youtube.com/watch?v=KiON4m1JU14



Clinical utility

- Decison Curve Analysis (DCA)

- Health economy




Summary




Ways of minimizing the risk of overtfit/overtraining

- Utilize expert knowledge to preselect relevant variables

- Adhere to the "20 patients in the least common outcome class per parameter in the model” principle
- Collect more data (do not develop prediction models based on small datasets)

- Split the data if the sample size is large (Development, Validation, Test; e.g. 70/15/15)

- Use K-fold cross validation to finetune hyperparameters

- Bootstrap — use samples not selected to evaluate performance

- Penalized regression (Ridge regression, LASSO, Elastic Net)




Thanks!
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