
Long-Term Causal Effects of Access to Institutional Delivery on Dementia Risk

Martin Fischer (joint work with Martin Karlsson, Nikolaos Prodromidis, Therese Nilsson and Martin Lövdén)

September 14, 2023

Risk Factors for Dementia (Lancet Commission)

Risk factors for dementia

 40% of known risk factors potentially preventable.

- 60% either unknown or considered non-preventable.
- Known risk factors represent associations, not causal relationships.
- Very early life period under-explored.

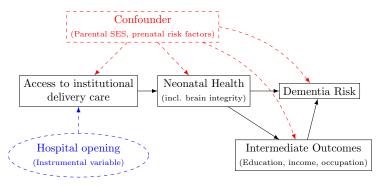


Figure: Path Diagram.

Reserve – Threshold Models

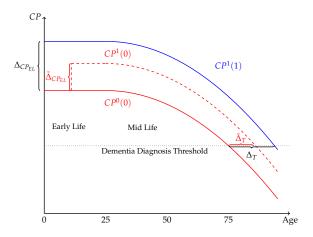
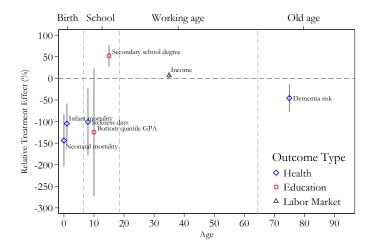
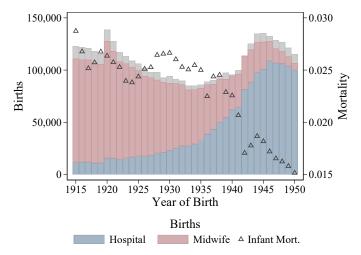



Figure: Cognitive Reserve – Potential Outcomes.


Treatment effects from being born in hospital estimated by instrumental variable

How to interpret the results – running LATE

- Estimated treatment effects from IV VERY large.
- Suggests that born in maternity ward eradicates infant mortality, the risk of getting dementia and doubles educational attainment. Note very reasonable...And also not in line with aggregated trends.
- Know that IV under heterogenous treatment effects estimates effect on subpopulation of compliers.
- Put effects into perspective by
 - a) using marginal treatment framework to explain the large effects stemming from **selection into treatment**,
 - b) present evidence that compliers were chosen through sophisticated risk selection by midwifes,
 - c) realign large treatment effects with general aggregated trends,
 - d) Consequences for external validly and policy implications.

Transition from Home to Hospital Births

Figure: Live Births and Neonatal Mortality in Sweden, 1915–50.

Martin Fischer

Transition from Home to Hospital Births

• Changing preferences to give births in maternity wards.

- ► Transition **earlier** than in other Nordic countries.
- Swedish midwifes generally well-educated but not for births with serious complications.
- ► Excess demand for giving birth in maternity wards ⇒ hospitals operated at capacity constraint.
- Supply shifts as *natural experiments*:
 - Establishment of new hospitals.
 - Extensions of existing institutions.

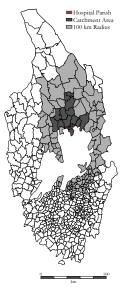
Data Sources

1. Swedish Administrative Data (SIP, individual level)

- Censuses (1950, 1970)
- Outcome: Dementia
 - Cause of Death Register
 - Inpatient Register

Mediators: Income, Education, Occupation

2. Intervention Data (expansions in the hospital sector)


- 51 hospital openings or extensions.
- Requirements for in sample:
 - Historical records on openings or extensions
 - Presence of a birthbook
- Identification of catchment area around hospital (parishes which contributed to births at the hospital ~30-40 km).

Data Sources, Ctd.

3. School Performance Data (individual level)

- Digitised from exam catalogues for subsample (N = 10, 965)
- ▶ Includes performance years 1 and 4 (ages 7–11).
- Read/speak, write, math, religion, physical education.
- Sickness absence (pct of school days).
- 4. Midwife Data (universe of home births)
 - Entire population 1928–38.
 - Data on mothers, complications, procedures, parity...
 - Available at health district level (N = 400).

Catchment Area Karlstad (1937)

- Start with radius 60km (120 km in the 5 northern counties).
- 2. Data-driven approach to identify parishes within radius which contribute to maternity ward births.
- 3. Typical radius 30-40km.
- 4. Radius is in line with historical sources on travel distances, using quite sophisticated modes of transportation for 1930s (cars, sometimes even planes!).

Empirical Strategy: Instrumental Variables

First Stage:

$$H_i = \beta_0 + \beta_1 Z_i + \beta'_2 X_i + \mu_c + \delta_t + \eta_i,$$

- H_i hospital birth
- Z_i born after an extension/opening
- catchment area fixed effects $\mathcal{U}_{\mathbf{C}}$
- δ_t fixed effects birth year

Second stage:

$$Y_i = \gamma_0 + \gamma_1 \hat{H}_i + \gamma'_2 x_i + \mu_c + \delta_t + \epsilon_i,$$

- 1. Pooled Regression Discontinuity (before and after)
- 2. Two-way fixed effects (DiD) (with 2-year window around opening)
- 3. Difference-in-Discontinuity (with 2-year window around opening)
- Linear regression models
- Survival models (time of first diagnosis of dementia).
 - Control function
 - G-estimation

Local average treatment effect

- With our binary instrument and under the assumptions of
 - Independence
 - Exclusion
 - and Monotonicity...
- γ₁ identifies a LATE for those being born in a hospital due to a supply side shift.

$$\gamma_1^{LATE} = \mathbb{E}\left(Y_i^1 - Y_i^0 \mid H_i^1 > H_i^0\right)$$

Not necessarily

$$\begin{split} \gamma_{1}^{LATE} &= \mathbb{E}\left(Y_{i}^{1} - Y_{i}^{0}\right)\\ \gamma_{1}^{LATE} &= \mathbb{E}\left(Y_{i}^{1} - Y_{i}^{0} \mid H_{i} = 1\right)\\ \gamma_{1}^{LATE} &= \mathbb{E}\left(Y_{i}^{1} - Y_{i}^{0} \mid H_{i} = 0\right) \end{split}$$

First Stage

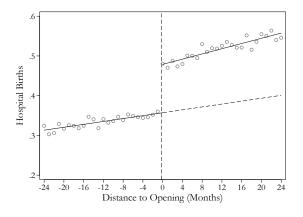


Figure: The First Stage: Hospital Birth

First Stage

Table: First Stage

	RDD	DiDisc
MATERNITY WARD OPENING/EXTENSION (P.P.)	12.42	12.51
[95% CI]	[10.69,14.16]	[9.06,15.97]
Mean Dep. Var	37.37	37.37
F-Statistic	218.46	53.59

Notes: Robust standard errors are clustered at the level of the running variable.

Early Life and Mid-life Outcomes

Table: Instrumental Variable Estimates

	Neonatal mortality	Life-Cycle Earnings	Years of education	Secondary school
BORN IN MATERNITY WARD				
RDD	-0.041** (0.017)	11225.51 (16808.78)	1.48*** (0.39)	0.18*** (0.04)
Mean dep. var.	0.028	175,944.46	9.42	0.24
DID	-0.045*** (0.009)	19457.92** (8280.75)	1.35*** (0.33)	0.17*** (0.05)
Mean dep. var.	0.028	175,944.46	9.42	0.24

Main Results

Table: Effects of Hospital Delivery on Dementia Risk

	RDD	DiDisc
PROPORTIONAL HAZARD MODEL		
ITT	0.876	0.883
[95% CI]	[0.774,0.990]	[0.798,0.976]
IV	0.339	0.462
	[0.130,0.885]	[0.218,0.979]
Ν	43,512	86,675
Cluster	24	48

Notes: Robust standard errors are clustered at the level of the running variable. Significance levels: * 0.10 * * 0.05 * * * 0.01.

Untreated Outcomes Test

Subpopulation of individuals who were **not** born in hospital

- before a supply-side expansion: compliers (C) and never-takers (N)
- after supply-side expansion only never-takers (N)
- any change in outcomes or in control variables W⁰ e {Y⁰, X⁰} within the untreated group which coincides with the intervention Z must be a result of selection.
- Use two different data source:
 - 1. Midwife diaries on homes births (by construction conditioning on no treamtment).
 - 2. Individual level data conditioning on **not** being treated.

Untreated Outcomes Test (UOT)

- Restrict analysis to untreated.
- Before a supply-side expansion the mean in the non-treated group is the weighted average between compliers and never-takers

$$\mathbb{E}(W^{0}|Z=0) = \frac{\mathbb{P}(C)}{\mathbb{P}(C) + \mathbb{P}(N))} \mathbb{E}(W^{0}|C) + \frac{\mathbb{P}(C)}{\mathbb{P}(C) + \mathbb{P}(N))} \mathbb{E}(W^{0}|N).$$
(1)

► After the supply-side expansion simply the mean of never-takers 𝔼(𝐶⁰|Z = 1) = 𝔼(𝐶⁰|𝔊).

We can quantify selection by

$$\begin{split} \Delta^{0} &= & \mathbb{E}(W^{0}|C) - \mathbb{E}(W^{0}|N) \\ &= & (-1)\frac{\mathbb{P}(C) + \mathbb{P}(N)}{\mathbb{P}(C)} \left[\underbrace{\mathbb{E}(W^{0}|Z=1) - \mathbb{E}(W^{0}|Z=0)}_{\theta_{0}}\right], \end{split}$$

with θ_0 the reduced form estimand (ITT) of the supply-side expansion **based on untreated only**.

Martin Fischer

Long-Term Causal Effects of Access to Institu

Untreated Outcomes Test (UOT)

- Testing whether there is non-random uptake of treatment.
- ► Δ⁰ represents the mean difference between compliers and never-takers prior to treatment.
- Note that this difference cannot be due to the treatment itself, as all are untreated.
- We will use △⁰ to investigate to which extent compliers are a selected group in terms of health risk and socio-economic status.
- Statistical inference is based on the delta method or bootstrapping.

Event Study Midwife Data (UOT)

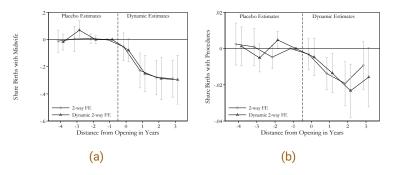
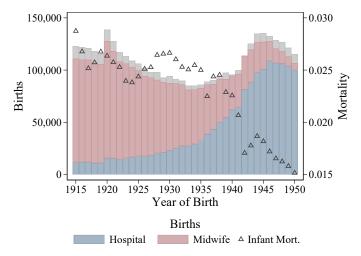


Figure: Event Study: (a) Births with Midwife; (b) Midwife Birth with Procedure

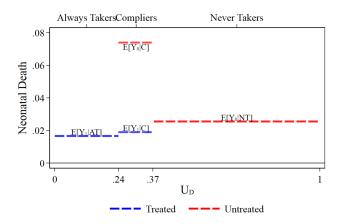

UOT on Midwife Assisted Home Births

	(1)	(2)	(3)	(4)	(5)	
	PANEL A: DID (2-WAY FE)					
	Births			Mother ill /	Twins	
	with Midwife	with Procedures	with Complications	diseased		
Hospital Opening θ^0	-0.284***	-0.013***	-0.003**	-0.006***	-0.001	
	(0.054)	(0.004)	(0.001)	(0.002)	(0.001)	
Ν	791,755	622,930	622,930	622,930	622,930	
Health Districts	397	413	413	413	413	
	UNTREATED OUTCOME TEST (SELECTION)					
$\mathbb{E}(W^0 N)$	0.513	0.029	0.003	0.011	0.012	
Δ^0		0.055	0.011	0.027	0.003	
Relative Risk		2.916	4.730	3.529	1.252	
	ROBUST DID ESTIMATOR (DYNAMIC 2-WAY FE)					
Robust Effect	-0.232	-0.012	-0.002	-0.008	-0.000	
SE Robust Effect	(0.061)	(0.004)	(0.001)	(0.007)	(0.002)	

Notes: Table shows effects of the a hospital opening or extension in a given health district.

Source: Midwife Diaries. Own calculations.

Transition from Home to Hospital Births


Figure: Live Births and Neonatal Mortality in Sweden, 1915–50.

Martin Fischer

Long-Term Causal Effects of Access to Institu

September 14, 2023 23 / 3

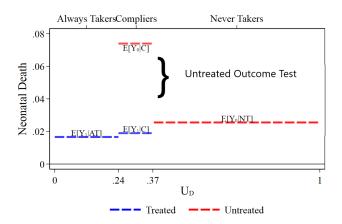

Treated and Untreated Outcomes: Neonatal Mortality

Figure: Treated and Untreated Outcomes by Group.

Martin Fischer

Treated and Untreated Outcomes: Neonatal Mortality

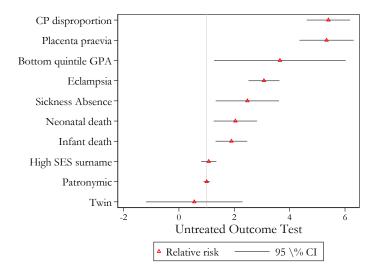


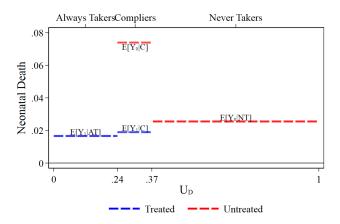
Figure: Treated and Untreated Outcomes by Group.

Martin Fischer

Introduction

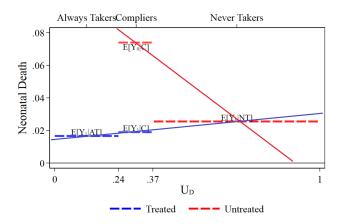
Selection: Summary

Is strong risk selection in line with historical sources?


General

- By law (SFS 1919:798) the midwife had to contact a doctor in case of complications during child birth.
- The National healthcare committee (1928): hospitals should be for complicated cases.
- Related to specific complications
 - Midwifes not allowed to do surgery or use sharp instruments.
 - Only doctors allowed to give medicine (pitocin 1927, ergometrin 1935, heparin 1937).
 - Eclampsia could be identified by urine test by 1923.
 - Hospitals had instruments to initiate contractions and from 1927 doctors could provide pitocin.

Can we do more? External validity?


- Until now only binary instrument.
- Estimates of IV restricted to compliers.
- How well do our IV estimates extrapoLATE?
- Important question, when decision whether extending a programme based on (self-)selection into treatment.
- Imposing more structure
 - Impose linearity in unobserved heterogeneity / resistance to being born in a hospital U_D
 - Continuous instrument distance to next hospital from families place of residence.

Linear MTE: Neonatal mortality

Figure: Treated and Untreated Outcomes by Group.

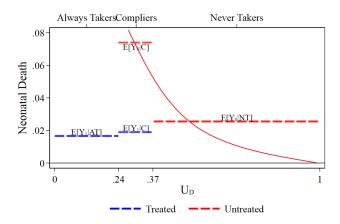
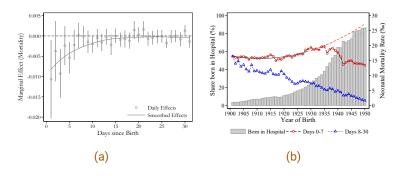

Linear MTE: Neonatal mortality

Figure: Treated and Untreated Outcomes by Group.


Martin Fischer

Linear MTE: Neonatal mortality

Figure: Treated and Untreated Outcomes by Group.

Reconciliation Effects and Trends

Figure: (a) Births with Midwife; (b) Midwife Birth with Procedure

Conclusions

- Critical births seem to have **shifted to hospitals**.
- Better care in case of (severe) complications.
- Find substantial decrease in the relative dementia risk of 10-15% from improved access to services.
- Parts of the effect runs through education and income.
- Unexplored potential to address the **early-life origins** of \triangleright dementia
- Potential for large policy leverage in developing countries... \triangleright
- However strong **self-selection** suggests ATE << LATE.