

Group-based trajectory modeling

Emerald G. Heiland, postdoc
Medical Epidemiology, Dept Surgical Sciences, Uppsala University
Dept Physical Activity \& Health, The Swedish School of Sport and Health Sciences (GIH)

LCP (10.5\%)
 Adolescent-onset (19.6\%)

Why use trajectories?

Estimating trajectories

- Standard statistical approaches
- Hierarchical modeling
- Latent curve analysis
- Accounts for individual variability about a mean population trend
- Doesn't take into account the qualitative dimension of longitudinal data

Assumptions

Assumptions

Group-based trajectory modeling

A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories
BOBBY L. JONES
DANIEL S. NAGIN
KATHRYN ROEDER
Carnegie Mellon University

2001

Group-based trajectory modeling

- A mixture of probability distributions that are suitably specificed to describe the data to be analyzed
- It is intended to complement hierarchical modeling and latent growth modeling
- Conceptually, group-based trajectory modeling and growth mixture modeling (GMM) are the same with some technical differences

Example of GBTM

Trajectories of physical aggression from age 6 to 15 for males in the Montrealbased longitudinal study sample. (Data from Nagin \& Tremblay 1999.)

Table 1 Physical aggression group profiles in the Montreal-based longitudinal study. (Data from Nagin \& Tramblay 1999)

Variable	Group			
	Low	Moderate declining	High declining	Chronic
Years of school: mother	11.1	10.8	9.8	8.4
Years of school: father	11.5	10.7	9.8	9.1
Low IQ (\% in lowest quartile)	21.6	26.8	44.5	46.4
Completed eighth grade on time (\%)	80.3	64.6	31.8	6.5
Juvenile record (\%)	0.0	2.0	6.0	13.3
\# of sexual partners age 17 a	1.2	1.7	2.2	3.5

${ }^{2}$ Number of sexual partners at age 17 within the past year.

Model selection

Model selection

- Type of distribution
- Number of trajectories
- Shape
- Size

Distribution types

Type of distribution	Type of data	Example
The censored normal distribution	Continuous	Longitudinal data on a scale of depression symptoms
The zero-inflated Poisson distribution (ZIP)	Count	Arrests by age
Binary logistic distribution	Dichotomous	Whether hospitalized in year t or

The number of groups

- Bayesian information criteria (BIC) - most common
- Akaike information criterion (AIC)
- Lo-Mendell-Rubin likelihood ratio test (LMR-LRT)
- Entropy
- Indexes classification accuracy by averaging the posterior probabilities after individuals have been assigned to their most likely class (range 0 to 1 ; closer to 1 is greater precision)

The objective of the model selection is not the maximization of some statistic of model fit; rather, it is to summarize the distinctive features of the data in the most parsimonious-and useful-fashion possible

Polynomial order (shape): linear, quadratic, cubic

Suggestions for model selection

Statistical criteria

A) Proportion assigned to the group $\geq 5 \%$
B) Average of the posterior probabilites ≥ 0.7
C) Odds of correct classification >5
D) Observing confidence intervals

Important to clearly communicate the decision points and justifications employed to select the best trajectory model

Application Example

Data on self-reported delinquent group membership from age 11 to 17 in a large Montreal-based longitudinal study of over 1,000 males

Outcome

- Self-reported delinquent group membership (yes = 1 / no =0)

Time scale

- Age 11 to 17

Logistic specification
Best fit

- Number of trajectory groups: 3 based on BIC

Application Example

Model Extensions

- Time-stable covariates
- Time-dependent covariates
- Dual-trajectory modeling (Nagin \& Tremblay 2001; Nagin 2005 chp 8)
- designed to analyze the developmental course of 2 distinct but related outcomes/time periods
- GBTM and propensity score matching (Haviland 2007, 2008, Haviland \& Nagin 2005)- for causal inference
- Group-based multi-trajectory modeling (Nagin et al. 2018)
- For multiple indicators
- Example: Rod et al. The Lancet 2020

Example: Dual-trajectory modeling

Analyze 2 distinct but related outcomes

A. Probability of delinquency group conditional on opposition group							
	Opposition trajectory group						
	Low	Moderate	High				
Low 2	0.54	0.29	0.23				
Rising	0.30	0.41	0.34				
Chronic	0.15	0.19	0.26				
					0.01	0.11	0.17

Example: Multi-trajectory modeling

Identifies latent clusters of individuals following similar trajectories across multiple indicators of an outcome of interest

Figure 2: Estimated trajectory groups of childhood adversities among Danish children
1097628 Danish children were divided into the five estimated trajectory groups of childhood adversities.

Software packages

Stata

- traj
- Jones \& Nagin. 2013, Soc Meths \& Resch

SAS

- Traj
- Jones, Nagin, Roeder. 2001, Soc Meths \& Resch

R

- Icmm

Sociological Methods \& Research

A Note on a Stata Plugin for Estimating Group-based Trajectory Models

 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: IO.II77/0049I24II3503I4IBobby L. Jones ${ }^{1}$ and Daniel S. Nagin ${ }^{2}$

Viewer - help traj
File Edit History Help

help traj $\quad \mathbf{x}$

\{*26Sep2021\}help traj

traj: Trajectory modeling
trajplot: Plot results
multtrajplot: Plot multi-trajectory model results
trajstart: Generate random start values

Description

traj uses a discrete mixture model to model longitudinal data. This model accommodates data groups with different parameter values for each group distribution. Groupings may identify distinct subpopulations. Alternatively, groupings may represent components of an approximation to an unknown and possibly complex data distribution.

Examples

1. Censored normal (cnorm) model
2. Variability (sigma) by group option - cnorm model
3. Zero-inflated Poisson (zip) model

In my research

References

1. Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociological Methods \& Research 2001; 29(3); 374.393.
2. Muthén B: Latent variable analysis: growth mixture modeling and related techniques for longitudinal data; in Kaplan D (ed): The Sage Handbook of Quantitative Methodology for the Social Sciences. Newbury Park, Sage, 2004, pp 345-368.
3. Nagin DS: Group-Based Modeling of Development. Cambridge, Harvard University Press, 2005.
4. Nagin DS, Odgers CL: Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol 2010;6:109-138.
5. Nagin DS. Group-based trajectory modeling: An overview. Ann Nutr Metab 2015;65:205-210.
6. Nagin DS et al. Group-based multi-trajectory modeling. Statistical Methods in Medical Research 2018;27(7):2015-2023.
7. Haviland A et al. Combining Group-Based Trajectory Modeling and Propensity Score Matching for Causal Inferences in Nonexperimental Longitudinal Data. Developmental Psychology. 2008.
8. https://www.andrew.cmu.edu/user/bjones/
