Tornblad/LUPOP seminar series March 9, 2023; 13:00-14:00

Group-based trajectory modeling

Emerald G. Heiland, postdoc

Medical Epidemiology, Dept Surgical Sciences, Uppsala University

Dept Physical Activity & Health, The Swedish School of Sport and Health Sciences (GIH)

LCP (10.5%) Adolescent-onset (19.6%) Why use Childhood-limited (24.3%) trajectories?

Estimating trajectories

- Standard statistical approaches
 - Hierarchical modeling
 - Latent curve analysis
- Accounts for individual variability about a mean population trend
- Doesn't take into account the qualitative dimension of longitudinal data

Assumptions

Assumptions

Group-based trajectory modeling

A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories

BOBBY L. JONES DANIEL S. NAGIN KATHRYN ROEDER Carnegie Mellon University

2001

Group-based trajectory modeling

- A mixture of probability distributions that are suitably specificed to describe the data to be analyzed
- It is intended to complement hierarchical modeling and latent growth modeling
- Conceptually, group-based trajectory modeling and growth mixture modeling (GMM) are the same with some technical differences

Example of GBTM

Trajectories of physical aggression from age 6 to 15 for males in the Montrealbased longitudinal study sample. (Data from Nagin & Tremblay 1999.)

Table 1Physical aggression group profiles in the Montreal-based longitudinal study. (Data from
Nagin & Tramblay 1999)

	Group			
Variable	Low	Moderate declining	High declining	Chronic
Years of school: mother	11.1	10.8	9.8	8.4
Years of school: father	11.5	10.7	9.8	9.1
Low IQ (% in lowest quartile)	21.6	26.8	44.5	46.4
Completed eighth grade on time (%)	80.3	64.6	31.8	6.5
Juvenile record (%)	0.0	2.0	6.0	13.3
# of sexual partners age 17ª	1.2	1.7	2.2	3.5

^aNumber of sexual partners at age 17 within the past year.

Model selection

Model selection

- Type of distribution
- Number of trajectories
- Shape
- Size

Distribution types

Type of distribution	Type of data	Example
The censored normal distribution	Continuous	Longitudinal data on a scale of depression symptoms
The zero-inflated Poisson distribution (ZIP)	Count	Arrests by age
Binary logistic distribution	Dichotomous	Whether hospitalized in year t or not

The number of groups

- Bayesian information criteria (BIC) most common
- Akaike information criterion (AIC)
- Lo-Mendell-Rubin likelihood ratio test (LMR-LRT)
- Entropy
 - Indexes classification accuracy by averaging the posterior probabilities after individuals have been assigned to their most likely class (range 0 to 1; closer to 1 is greater precision)

The objective of the model selection is not the maximization of some statistic of model fit; rather, it is to summarize the distinctive features of the data in the most parsimonious—and useful—fashion possible

Comparison of goodness of fit in pre-diagnosis physical activity trajectories.

Dro. concor diagnosia			
	Pre-cancer diagnosis		
No. of groups	BIC	Entropy	Polynomial Order
5	-172287.76	0.551	31233
5	-172274.77	0.570	33233
6	-171692.67	0.586	234233
6	-171850.70	0.599	223122
7	-171234.26	0.579	3 2 3 1 2 2 2
7	-171251.82	0.579	3231212
8	-171022.32	0.544	32312122
8	-171005.27	0.541	3 2 3 1 2 1 2 3
8	-171036.61	0.542	32312121

Polynomial order (shape): linear, quadratic, cubic

BIC = Bayesian information Criteria. Only show the models where there was significance (P<0.05) in all the groups.

Suggestions for model selection

Statistical criteria

- A) Proportion assigned to the group $\geq 5\%$
- B) Average of the posterior probabilites ≥0.7
- C) Odds of correct classification >5
- D) Observing confidence intervals

Important to clearly communicate the decision points and justifications employed to select the best trajectory model

Application Example

Data on self-reported delinquent group membership from age 11 to 17 in a large Montreal-based longitudinal study of over 1,000 males

Outcome

- Self-reported delinquent group membership (yes = 1 / no =0)
 Time scale
- Age 11 to 17

Logistic specification

Best fit

• Number of trajectory groups: 3 based on BIC

Application Example

Model Extensions

- Time-stable covariates
- Time-dependent covariates
- Dual-trajectory modeling (Nagin & Tremblay 2001; Nagin 2005 chp 8)
 - designed to analyze the developmental course of 2 distinct but related outcomes/time periods
- GBTM and **propensity score matching** (Haviland 2007, 2008, Haviland & Nagin 2005)- for causal inference
- Group-based multi-trajectory modeling (Nagin et al. 2018)
 - For multiple indicators
 - Example: Rod et al. The Lancet 2020

Example: **Dual-trajectory modeling**

Analyze 2 distinct but related outcomes

A. Probability of delinquency group conditional on opposition group			
	Opposition trajectory group		
Property delinquency group	Low	Moderate	High
Low 1	0.54	0.29	0.23
Low 2	0.30	0.41	0.34
Rising	0.15	0.19	0.26
Chronic	0.01	0.11	0.17
	1.00	1.00	1.00

Example: Multi-trajectory modeling

Identifies latent clusters of individuals following similar trajectories across multiple indicators of an outcome of interest

UPPSALA

Figure 2: Estimated trajectory groups of childhood adversities among Danish children

1097 628 Danish children were divided into the five estimated trajectory groups of childhood adversities.

Software packages

Stata

- traj
- Jones & Nagin. 2013, Soc Meths & Resch
 SAS
- Traj
- Jones, Nagin, Roeder. 2001, Soc Meths & Resch

R

• Icmm

Article

A Note on a Stata Plugin for Estimating Group-based Trajectory Models Sociological Methods & Research 00(0) 1-6 © The Author(s) 2013 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/0049124113503141 smr.sagepub.com

Bobby L. Jones¹ and Daniel S. Nagin²

 Viewer - help traj 	
File Edit History Help	
\leftarrow \rightarrow \bigcirc \rightleftharpoons \bigcirc help traj	
help traj 🗙	
+	Dialog - Also see -
{*26Sep2021} help traj	
traj : Trajectory modeling trajplot: Plot results multtrajplot: Plot multi-trajectory model results trajstart: Generate random start values	
Description	
traj uses a discrete mixture model to model longitudinal data. This model ac values for each group distribution. Groupings may identify distinct subpopul components of an approximation to an unknown and possibly complex data distr	lations. Alternatively, groupings may represent
Examples	
1. Censored normal (cnorm) model	
2. Variability (sigma) by group option - cnorm model	
3. Zero-inflated Poisson (zip) model	

A Logistic (logit) model

In my research

References

- 1. Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. *Sociological Methods & Research* 2001; 29(3); 374.393.
- Muthén B: Latent variable analysis: growth mixture modeling and related techniques for longitudinal data; in Kaplan D (ed): The Sage Handbook of Quantitative Methodology for the Social Sciences. Newbury Park, Sage, 2004, pp 345–368.
- 3. Nagin DS: Group-Based Modeling of Development. Cambridge, Harvard University Press, 2005.
- 4. Nagin DS, Odgers CL: Group-based trajectory modeling in clinical research. *Annu Rev Clin Psychol* 2010;6:109–138.
- 5. Nagin DS. Group-based trajectory modeling: An overview. Ann Nutr Metab 2015;65:205-210.
- 6. Nagin DS et al. Group-based multi-trajectory modeling. *Statistical Methods in Medical Research* 2018;27(7):2015-2023.
- 7. Haviland A et al. Combining Group-Based Trajectory Modeling and Propensity Score Matching for Causal Inferences in Nonexperimental Longitudinal Data. *Developmental Psychology*. 2008.
- 8. https://www.andrew.cmu.edu/user/bjones/

