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About me

● MSc in computer science and engineering
● 2 years as data scientist in Malmö
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About me

● Machine learning at the emergency department
● Focus on patients with chest pain
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About me

● Jonas Björk
● Ulf Ekelund
● Jakob Lundager Forberg
● Mattias Ohlsson
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Machine learning for predicting 
major adverse cardiac events 

using serial electrocardiograms



Chest pain
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Angina pectoris

Angere = “to strangle”

Pectus = “chest”
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Angina pectoris

Insufficient oxygen (ischemia)

Can lead to heart attack
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What the doctor wants to know

● Send home?
● Send to the cardiac care unit?
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What the doctor wants to know

Major Adverse Cardiovascular Event?

● Chest pain
● Heart attack
● Death
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What the doctor does

● Looks at the ECG
● Compares with previous ECGs
● Takes blood sample
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What is an ECG?
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What is an ECG?
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What is an ECG?
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Problem formulation
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Problem formulation
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Problem formulation

Is there any added value of previous ECGs for predicting MACE?

17



ESC-Trop

● Patients with chest pain at ED
● Consecutive between 2017-2018
● 26547 unique patients
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ESC-Trop

● Patients with chest pain at ED
● Consecutive between 2017-2018
● 26547 unique patients
● 26267 non-STEMI
● 26044 with TnT measurements
● 24048 with ECG records at index
● 19500 with >1 ECG record
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Strategy
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Strategy

● Pick a model
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Strategy

● Pick a model
● Tune it for 1 ECG
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Strategy

● Pick a model
● Tune it for 1 ECG
● Tune it for 2 ECGs
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Strategy

● Pick a model
● Tune it for 1 ECG
● Tune it for 2 ECGs
● Compare to see which was better
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Problems
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Problems

● What features to include?
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What features to include?

Only ECGs

● Simpler
● Easier (maybe)
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What features to include?

Only ECGs

● Simpler
● Easier (maybe)

ECGs + age, sex, troponin

● More clinically relevant
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Problems

● What features to include?
● What model to use?
● How to tune the model?
● How to quantify the improvement?

33



Serial ECGs
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Serial ECGs - Logistic regression

Glasgow+
PCA x1

Glasgow+
PCA x2

CAT x
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Logistic 
regression y



Serial ECGs - Neural Network

Glasgow x1

Glasgow x2

CAT x
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Serial ECGs - Convolutional Neural Network

CNN x1

CNN x2

CAT x
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Serial ECGs - Pre-trained ResNet

ResNet x1

ResNet x2

CAT x

43

Neural 
network y

Neural 
network

Neural 
network



What model to use?

● Logistic regression (LR)
● Neural network (NN)
● Convolutional neural network (CNN)
● Pre-trained ResNet (RN)
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Problems

● What features to include?
● What model to use?
● How to tune the model?
● How to quantify the improvement?
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How to tune the model?

Training set Validation set Test set
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How to tune the model?

Training set
50% (9750 patients)

Validation set
25% (4875 patients)

Test set
25% (4875 patients)
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How to tune the model?

● Train/validation/test set split
● Random search
● Ensemble of best models
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Problems

● What features to include?
● What model to use?
● How to tune the model?
● How to quantify the improvement?
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How to quantify the improvement?

● Metric: ROC AUC
● Bootstrapping
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Results
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Results, stratified on index ECG
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Results, stratified on index ECG
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Results, stratified on index ECG
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Results, stratified on index ECG
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Results, stratified on previous AMI
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Results, stratified on previous AMI
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Results, stratified on previous AMI
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Results, stratified on previous AMI
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Conclusions

● There might be a signal in the previous ECGs
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Conclusions

● There might be a signal in the previous ECGs
● But this signal is weak enough to be practically useless
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Questions?
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