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About me

e MSc in computer science and engineering
e 2 years as data scientist in Malmo



About me

e Machine learning at the emergency department
e Focus on patients with chest pain
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Machine learning for predicting
major adverse cardiac events
using serial electrocardiograms



Chest pain

Chest Pain




Angina pectoris

Angere = “to strangle”

Tightness or
pain in chest

Pectus = “chest”

Blocked
Coronary Artery



Angina pectoris

Insufficient oxygen (ischemia)

Can lead to heart attack

Blocked
Coronary Artery

Tightness or
pain in chest




What the doctor wants to know

e Send home?
e Send to the cardiac care unit?



What the doctor wants to know

Major Adverse Cardiovascular Event?

e Chest pain
e Heart attack
e Death
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What the doctor does

e Looks atthe ECG
e Compares with previous ECGs
e Takes blood sample
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What is an ECG?

PuoroGraPH OF A COMPLETE ELECTROCARDIOGRAPH, SHOWING THE MANNER IN WHICH THE ELECTROLES ARE
Atracuep 10 THE PATIENT, IN TInS Case mne Haxps ANp ONE Fcor BEING IMMERSED IN JARS OF
SaLt SonuTioN
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What is an ECG?
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What is an ECG?

QRS

Complex

R

PR Interval S

ST
Segment

QT Interval
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Problem formulation

Google Scholar

® Artiklar

machine learning ecg

Ung,iat (0,08 sek.)
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Problem formulation

Google Scholar

® Artiklar

machine learning "serial ecg"

Ung(vo,OQ sek.)
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Problem formulation

Is there any added value of previous ECGs for predicting MACE?
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ESC-Trop

e Patients with chest pain at ED
e Consecutive between 2017-2018
26547 unique patients
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ESC-Trop

Patients with chest pain at ED
Consecutive between 2017-2018
26547 unique patients

26267 non-STEMI

26044 with TnT measurements
24048 with ECG records at index
19500}with >1 ECG record
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Strategy
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Strategy

e Pick a model

21



Strategy

e Pick a model
e Tuneitfor1ECG
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Strategy

e Pick a model
e Tuneitfor1ECG
e Tuneitfor2 ECGs
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Strategy

Pick a model

Tune it for 1 ECG

Tune it for 2 ECGs

Compare to see which was better
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Problems
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Problems

e \What features to include?
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Problems

e \What features to include?
e \What model to use?
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Problems

e \What features to include?
e \What model to use?
e How to tune the model?
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Problems

What features to include?

What model to use?

How to tune the model?

How to quantify the improvement?
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Problems

e \What features to include?
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What features to include?

Only ECGs

e Simpler
e Easier (maybe)
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What features to include?

Only ECGs

e Simpler
e Easier (maybe)

ECGs + age, sex, troponin

e More clinically relevant
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Problems

e \What model to use?
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Serial ECGs
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Serial ECGs

Feature
extraction

A

o
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Serial ECGs

Feature
extraction

A

Combinator

—
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Serial ECGs

Feature
extraction

A

Combinator

Classifier

A

f—)% s
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Serial ECGs

Feature
extraction

A

Combinator
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Serial ECGs

Feature
extraction
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Combinator
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Serial ECGs - Logistic regression

| Glasgow+
PCA

Glasgow+
PCA

CAT

Logistic
regression
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Serial ECGs - Neural Network

~ Glasgow

Glasgow

Neural
network

Neural
network

CAT

Neural
network
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Serial ECGs - Convolutional Neural Network

CNN

CNN

Neural
network

Neural
network

CAT

Neural
network
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Serial ECGs - Pre-trained ResNet

ResNet

ResNet

Neural
network

Neural
network

CAT

Neural
network
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What model to use?

Logistic regression (LR)

Neural network (NN)

Convolutional neural network (CNN)
Pre-trained ResNet (RN)
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Problems

e How to tune the model?
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How to tune the model?

Validation set
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How to tune the model?

Training set
50% (9750 patients)

Validation set
25% (4875 patients)

Test set
25% (4875 patients)
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How to tune the model?

e Train/validation/test set split
e Random search
e Ensemble of best models
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Problems

e How to quantify the improvement?
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How to quantify the improvement?

e Metric: ROC AUC
e Bootstrapping
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Results

ECGs only, Test data
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Results

ECGs only, Test data
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Results

ECGs + flat features, Test data
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Results

ECGs + flat features, Test data
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Results, stratified on index ECG

ECGs only, Test data

Pathological index ECG = False Pathological index ECG = True
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Results, stratified on index ECG

ECGs only, Test data
Pathological index ECG = False
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Results, stratified on index ECG
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Results, stratified on index ECG

ECGs + flat features, Test data

Pathological index ECG = False Pathological index ECG = True
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Results, stratified on previous AMI
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Results, stratified on previous AMI

ECGs only, Test data
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Results, stratified on previous AMI
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Results, stratified on previous AMI
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Conclusions

e There might be a signal in the previous ECGs
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Conclusions

e There might be a signal in the previous ECGs
e But this signal is weak enough to be practically useless
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Questions?
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